
www.bnsit.pl

Natural Course of Refactoring.
A refactoring workflow.

Mariusz Sieraczkiewicz

@ms_bnsit_pl

http://msieraczkiewicz.blogspot.com

1

www.bnsit.pl

Why refactoring is like sex?
Natural Course of Refactoring

www.bnsit.pl

Once you get started, you’ll only stop
because you’re exhausted.

One mistake and the consequences
may be really huge.

Why refactoring is like sex?

Natural Course of Refactoring 2014 3

(adapted from http://www.thealmightyguru.com/Humor/Docs/ProgrammingIsLikeSex.html)

www.bnsit.pl

People more talk about it than
actually do.

You can do it for money or for fun.

It’s not really an appropriate topic for
dinner conversation.

Why refactoring is like sex?

Natural Course of Refactoring 2014 4

(adapted from http://www.thealmightyguru.com/Humor/Docs/ProgrammingIsLikeSex.html)

www.bnsit.pl

Beginners do a lot of noise about it.

Some people are just naturally good at it,

.. but some people will never realize how
bad they are, and you’re wasting your time
trying to tell them.

Why refactoring is like sex?

Natural Course of Refactoring 2014 5

(adapted from http://www.thealmightyguru.com/Humor/Docs/ProgrammingIsLikeSex.html)

www.bnsit.pl

Code readability
Natural Course of Refactoring

www.bnsit.pl

.so!changesIntroDuCinG!maYBe,softwaRe,TosO,
calLEdprOgRessIve,and.however.cHanGes!Modi
fies.usuallY,sTRucTureOFmaYbe,hoWEVeRtHeco
DE,And!wHaTmaYbecumulatEdhowevEr.anD,m
Akes.AnD,,and,the.LeSs!rEAdAblE,aNd.cOdeMA
ybe.ANd,!and,!Thenumber!of,sO,HoWEvErsode
peNdeNCiES,And.MAybeintErACtIOns!betWeen
HoWevEr!differEntsyStem.moDules!inCreasESo
That,iTsO!morE.is.diffiCuLt,To,AnDuNdErstandm
odIFy

Why is it difficult to understand software after some
time of its evolution?

Natural Course of Refactoring 2014 7

www.bnsit.pl

Introducing changes to software (so called
progressive changes) usually modifies
structure of the code, what cumulated
makes the code less readable. The number
of dependencies and interactions between
different system modules increase, so that
it is more difficult to understand and
modify.

Why is it difficult to understand software after some
time of its evolution?

Natural Course of Refactoring 2014 8

www.bnsit.pl

Flavours of refactoring
Natural Course of Refactoring

Natural Course of Refactoring 2014 9

www.bnsit.pl

Two flavours of refactoring

Natural Course of Refactoring 2014 10

www.bnsit.pl

Everyday refactoring

Within a reach of every programmer

Can be done in minutes

Mostly safe, IDE-base automatic refactorings

For local health of the code

Part of programming practice

No excuse for not doing it

Everyday refactoring

Natural Course of Refactoring 2014 11

www.bnsit.pl

Strategic refactoring

A team longer term effort

Requires aligning with iteration planning

Generates items in backlog

Risky activity that requires intensive testing
(including good tests suite)

Difficult and time-consuming

Check carefully if refactoring gives you enough
value (Feather’s Quadrant)

Strategic refactoring

Natural Course of Refactoring 2014 12

www.bnsit.pl

When should I do strategic refactoring?
Natural Course of Refactoring

www.bnsit.pl

High complexity/
Seldom changes

Don’t touch it.

High complexity/
Frequent changes

Apply strategic
refactoring

Low complexity/
Seldom changes

Utils, good for
experiments

Low
complexity/Frequent

changes

Heaven 

Feather’s Quadrant

Natural Course of Refactoring 2014 14

Confront with:
• business vision

Frequency of changes

Complexity

www.bnsit.pl

Natural Course of Refactoring
The process

Natural Course of Refactoring 2014 16

www.bnsit.pl

Step 0. Understand the code

Natural Course of Refactoring 2014 17

www.bnsit.pl

Sometimes it is the most difficult point

Try to…

• find an author and ask for help

• find somebody who worked with the code and
ask for help

• find somebody who knows the system (or
module) and ask for help

• Do it yourself if none of above are possible

Understand

Natural Course of Refactoring 2014 18

www.bnsit.pl

Mental tools

Simple code cleaning

Clean up the names

Add temporary comments to the code

Introduce lazy variables initialization

Make optical cleanup (make more space)

Scratch refactoring

Do some exploratory refactoring to be thrown away

The only goal is to gain more understanding of the code

Understand

Natural Course of Refactoring 2014 19

www.bnsit.pl

They should be temporary. Delete them after
refactoring.

// SMELL it doesn’t look good,

copy-paste antipattern

// REFACTOR introduce factory

// NOTE send a message

Introduce refactoring comments

Natural Course of Refactoring 2014 20

www.bnsit.pl

Step 1. Express algorithm

Natural Course of Refactoring 2014 21

www.bnsit.pl

Aim

Code that speaks to you

Mental tools

• Compose method

• Introduce Method Object Refactoring

• Extract method

• Naming conditions

Express algorithm

Natural Course of Refactoring 2014 22

www.bnsit.pl

Step 2. Extract responsibilities

Natural Course of Refactoring 2014 23

www.bnsit.pl

Mental tools

Single responsibility principle

Move method refactoring

Extract class refactoring

Introduce Domain Object

Introduce Value Object

Extract responsibilities

Natural Course of Refactoring 2014 24

www.bnsit.pl

Step 3. Introduce flexibility

Natural Course of Refactoring 2014 25

www.bnsit.pl

Mental tools

S.O.L.I.D.

Design patterns

Refactoring to patterns

Apply design patterns

Natural Course of Refactoring 2014 26

www.bnsit.pl

Step 4. Evolve architecture

Natural Course of Refactoring 2014 27

www.bnsit.pl

Mental tools

Introducing/removing layers

Introducing or replacing ORM/NoSQL/?

Important change in building blocks

Changing or introducing new framework

Introducing events

Introducing state machine

Moving towords DDD, Microservices, CQRS

Introducing Bounded-Context (DDD)

Applying Anticorruption Layer

Evolve architecture

Natural Course of Refactoring 2014 28

Natural Course of Refactoring 2014 29

www.bnsit.pl Natural Course of Refactoring 2014 30

Everyday refactoring

 Strategic refactoring

www.bnsit.pl

Why NCR?

Easy to teach

Easy to understand and remeber

Separates everyday and strategic refactoring

Indicates the simplest (safe) possible step in the
moment

Gives hints what kind of refactorings can be
applied in the moment

NCR IN A TEAM

Natural Course of Refactoring 2014 31

www.bnsit.pl

Natural Course of Refactoring.
A refactoring workflow.

Mariusz Sieraczkiewicz

@ms_bnsit_pl

http://msieraczkiewicz.blogspot.com

32

